Early Detection of the Flu Season Using the DC Department of Health’s Syndromic Surveillance System

APHA, Washington, November, 2007
Introduction

• Syndromic surveillance involves
 – Collection and monitoring of syndrome-related data
 – Application of statistical detection algorithms to detect a change or trend indicating
 • Bioterrorist attack
 • Beginning of seasonal flu, or pandemic

• Research questions
 – Regarding seasonal flu in Washington DC,
 • Which combinations of data in the DC ER SS system are most sensitive?
 • How quickly do they alert, compared to other sources of information?
DC DOH’s ER SS System

- Emergency Room Syndromic Surveillance System
 - Since 9/12/01, DC DOH has collected data on a daily basis from hospital ERs
 - Part of regional surveillance system including suburban Maryland and Northern Virginia
- Hospitals report number of patients with particular chief complaint
 - Respiratory — Neurological
 - Gastrointestinal — Sepsis
 - Unspecified infection — Death
 - Rash — Other
- Data for this presentation through June 2006
 - 7 hospitals with relatively complete data
Detection algorithms

- **CUSUM (CUMulative SUMmation)**
 \[- C_t = \max [C_{t-1} + (y_t - \mu) - k, 0] \quad \text{Alarm if } C_t > h\]

- **CUSUM EXPO (mean-adjusted)**
 - Exponentially Weighted Moving Average (EWMA)
 \[- z_t = \lambda y_t + (1-\lambda)z_{t-1} \]
 \[- C_t = \max [C_{t-1} + (y_t - z_t) - k, 0] \quad \text{Alarm if } C_t > h\]

- **Multivariate (MV) CUSUM** (Stoto et al., 2006)
Preliminary results

• Adjust false positive rates to account for multiple streams to >1 stream

• Fine-tuned CUSUM, CUSUM EXPO, and MV CUSUM algorithms using 2-pronged approach
 – Simulation studies
 – Compare to known outbreaks

• Results
 – In general, MV CUSUM performs better than CUSUM and CUSUM EXPO
 – In one setting (3 streams unspecified infection), CUSUM EXPO outperformed MV CUSUM
Winter 2002: Unspecified Infection

Red = Hospital A, Orange = Hospital H, Green = Hospital I
Winter 2002: Respiratory

Red = Hospital A, Green = Hospital B, Blue = Hospital C, Lt. Blue = Hospital D, Purple = Hospital E, Yellow = Hospital H, Black = Hospital I
Winter 2005: Children’s unspecified and respiratory and CDC sentinel physicians

Winter 2005: Children's Hospital Surveillance Systems (Black Symbols) vs. All Others (Red Symbols)
Winter 2004: Children’s unspecified and respiratory and CDC sentinel physicians

Winter 2004: Children's Hospital Surveillance Systems (Black Symbols) vs. All Others (Red Symbols)
Early Detection of the Flu Season by DC ER Syndromic Surveillance

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CDC sentinel physicians</td>
<td>Jan 26 +26</td>
<td>Nov 22</td>
<td>Jan 22 +20</td>
<td>Feb 4</td>
</tr>
<tr>
<td>Children’s Hospital</td>
<td>Dec 31</td>
<td>Nov 24 +2</td>
<td>Jan 2</td>
<td>Feb 27 +23</td>
</tr>
<tr>
<td>All other hospitals</td>
<td>Jan 4 +4</td>
<td>Dec 8 +14</td>
<td>Jan 4 +2</td>
<td>--</td>
</tr>
</tbody>
</table>
Conclusions

• In detecting the start of the influenza season using the DC ER SSS …

• “Unspecified infection” cases most effective
 – “Respiratory” cases provide information, but not beyond that in unspecified infection

• Children’s National Medical Center more sensitive than
 – Other hospitals alone
 – Multivariate analysis of 6 or 7 hospitals

• Analysis of unspecified infection cases from Children’s performs well compared to CDC sentinel physician surveillance